An Oscillatory Hebbian Network Model of Short-Term Memory

نویسندگان

  • Ransom K. Winder
  • James A. Reggia
  • Scott A. Weems
  • Michael F. Bunting
چکیده

Recurrent neural architectures having oscillatory dynamics use rhythmic network activity to represent patterns stored in short-term memory. Multiple stored patterns can be retained in memory over the same neural substrate because the network's state persistently switches between them. Here we present a simple oscillatory memory that extends the dynamic threshold approach of Horn and Usher (1991) by including weight decay. The modified model is able to match behavioral data from human subjects performing a running memory span task simply by assuming appropriate weight decay rates. The results suggest that simple oscillatory memories incorporating weight decay capture at least some key properties of human short-term memory. We examine the implications of the results for theories about the relative role of interference and decay in forgetting, and hypothesize that adjustments of activity decay rate may be an important aspect of human attentional mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation

A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable ...

متن کامل

A Simple Oscillatory Short-Term Memory

Oscillatory neural network models have been an increasing focus of study over the last several years. These models consist of recurrent neural networks whose dynamics are characterized by persistent learned/designed rhythmic activity. Here we consider simple oscillatory memories for short-term retention of items occurring as temporal sequences. By incorporating decay as well as interference, we...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Synchronization and acceleration: complementary mechanisms of temporal coding

Temporal coding is studied with an oscillatory network model that is a complex-valued generalization of the Cohen-Grossberg-Hopfield system. The model is considered with synchronization and acceleration, where acceleration refers to a mechanism that causes the units of the network to oscillate with higher-phase velocity in case of stronger and/or more coherent input. Applying Hebbian memory, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2009